A bnormal products in the Bischler-N apieralski isoquinoline synthesis

Satoshi D oi, N aohiro Shirai and Yoshiro Sato*

Faculty of Pharmaceutical Sciences, N agoya City U niversity, Tanabe-dori, M izuho-ku, Nagoya 467, J apan

Abstract

Reaction of N -[2-(4-methoxyphenyl)ethyl]benzamides with phosphorus pentoxide (and phosphoryl chloride) gives 7-methoxy-1-phenyl-3,4-dihydroisoquinolines (a normal Bischler-N apieralski reaction product) and 6-methoxy-1-phenyl-3,4-dihydroisoquinolines (an abnormal reaction product). The reaction mechanism is discussed.

The Bischler-N apieralski reaction ${ }^{1}$ is of importance in isoquinoline syntheses. We noted that when N -[2-(4-methoxyphenyl)-ethyl]-4-methoxybenzamide 1a ($\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{OMe}$) was treated with a mixture of phosphoryl chloride and phosphorus pentoxide, typical Bischler-N apieralski reaction conditions, subsequent sodium borohydride reduction gave a $2: 1$ mixture of 7-methoxy-1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline 4 a (normal product) and 6-methoxy-1-(4-methoxy-phenyl)-1,2,3,4-tetrahydroisoquinoline 5a (abnormal product) respectively (Scheme 1). We have examined the effects of the

2
${ }^{1 i}$

4

$$
\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}^{3}-p
$$

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{POCl}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}$, xylene, 110$130^{\circ} \mathrm{C}, 0.5-48 \mathrm{~h} ; \mathrm{ii}, \mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{RT}, 1 \mathrm{~h}$
reaction conditions and the substituents on the benzene ring on this abnormal reaction which gives rise to $\mathbf{5 a}$.

Results and discussion

When N -[2-(4-methoxyphenyl)ethyl]-4-methoxybenzamide 1a was heated at reflux with phosphoryl chloride as in the synthesis of 6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinoline ${ }^{2}$ 2e and a 1-(4-methoxyphenyl) analogue ${ }^{3}$ 2f from N -[2-(3,4dimethoxyphenyl)ethyl]benzamides le,f, the yield of 7 -methoxy-1-(4-methoxyphenyl)-3,4-dihydroisoquinoline 2a was low (Table 1, compare entry 1 to 11 and 12). H owever, a mixture of $\mathbf{2 a}$ and its constitutional isomer 6-methoxy-1-(4-methoxyphenyl)-3,4-dihydroisoquinoline 3a was formed in a ratio of 37:63 when 1a was treated with phosphorus pentoxide
instead of phosphoryl chloride in xylene (entry 2). The use of a mixture of phosphoryl chloride and phosphorus pentoxide in a molar ratio of 2:1 resulted in a good yield and a higher ratio of 3a (entry 3). F urthermore, refluxing in a mixture with a molar ratio of $9: 1$, which was made by adding phosphoryl chloride to a mixture of la and phosphorus pentoxide, resulted in the selective formation of 3a (entry 4). On the other hand, when a 9:1 mixture was made by adding a suspension of 1a in phosphoryl chloride to phosphorus pentoxide, the ratio of 3a was decreased (entry 5). Thus, contact between 1a and phosphorus pentoxide should promote the formation of 3a.
The effects of the substituents R^{2} and R^{3} were examined under the reaction conditions for entry 4 (entries $6-10$). The reaction of N -[2-(4-methoxyphenyl)ethyl]benzamide $\mathbf{1 b}$ also gave a mixture of 7-methoxy-1-phenyl-3,4-dihydroisoquinoline $\mathbf{2 b}$ (normal product) and the 6-methoxy analogue $\mathbf{3 b}$ (abnormal product) (entry 6). H owever, in the reports of Lantos et al. ${ }^{4}$ and M inor et al., ${ }^{5}$ who worked with similar reaction conditions (entries 7 and 8) there is no mention of 3 b being formed; the reason for this difference in the results is unclear.
N -[2-(4-M ethylphenyl)ethyl]-4-methoxybenzamide lc and the N -[2-(4-chlorophenyl)ethyl] analogue 1 d failed to form the corresponding abnormal product $3 \mathrm{c}, \mathrm{d}$, even with prolonged heating of 1d (entries 9, 10). Thus, the presence of a 4-methoxy group seems necessary in order to give formation of 3.
In the reaction of $\mathbf{1}$ with phosphoryl chloride, cyclization to $\mathbf{2}$ may proceed via the dichlorophosphoric acid esters 8 (Scheme 2,

Table 1 Bischler- N apieralski reaction of N -[2-(4-substituted phenyl)ethyl]-4-substituted benzamide $\mathbf{1}$

		R^{1}	R^{2}	R^{3}	Reaction conditions			Total Y ield (\%)	Product ratio ${ }^{\text {a }}$		R ef.
					R eagent (mol ratio)/solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)		2	3	
1	1a	H	OM e	OM e	$\mathrm{POCl}_{3} /$ xylene	110	3	28	100	0	
2	1a	H	OMe	OMe	$\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{xyl}$ lene	130	3	18	37	63	
3	1a	H	OMe	OMe	$\mathrm{POCl} / 3 / \mathrm{P}_{2} \mathrm{O}_{5}(2: 1) / x y l e n e$	130	3	64	16	84	
4	1a	H	OMe	OMe	$\mathrm{POCl} 3_{3} / \mathrm{P}_{2} \mathrm{O}_{5}(9: 1)^{\text {b }}$	110	3	77	<5	>95	
5	1a	H	OMe	OMe	$\mathrm{POCl} 3_{3} / \mathrm{P}_{2} \mathrm{O}_{5}(9: 1)^{\text {c }}$	110	3	50	67	33	
6	1 b	H	OMe	H	$\mathrm{POCl} 3_{3} / \mathrm{P}_{2} \mathrm{O}_{5}(9: 1)^{\mathrm{b}}$	110	3	57	67	33	
7	1 b	H	OMe	H	$\mathrm{POCl} 3 / \mathrm{P}_{2} \mathrm{O}_{5}(1.6: 1) / \mathrm{xyl}$ ene	130	4	65	100	0	4
8	1 b	H	OMe	H	$\mathrm{POCl}_{3} / \mathrm{P}_{2} \mathrm{O}_{5}(1.8: 1) / \mathrm{xyl}$ ene	130	6	5	100	0	5
9	1 c	H	Me	OMe	$\mathrm{POCl} 3_{3} / \mathrm{P}_{2} \mathrm{O}_{5}(9: 1)^{\mathrm{b}}$	110	3	61	100	0	
10	1 d	H	Cl	OMe	$\mathrm{POCl}_{3} / \mathrm{P}_{2} \mathrm{O}_{5}(9: 1)^{\mathrm{b}}$	110	48	19	100	0	
11	1 e	OMe	OMe	H	POCl_{3} /toluene	110	1.5	85	100	0	2
12	$1 f$	OMe	OMe	OMe	POCl_{3} /toluene	110	0.5	65	100	0	3

${ }^{\text {a }}$ The product ratios were determined by integration of the ${ }^{1} \mathrm{H}$ signals of the 500 M HzNMR spectrum. ${ }^{\mathrm{b}} \mathrm{POCl}_{3}$ was added to a mixture of la and $\mathrm{P}_{2} \mathrm{O}_{5}$ after which the mixture was heated. ${ }^{c} \mathrm{~A}$ suspension of 1 a in POCl_{3} was added to $\mathrm{P}_{2} \mathrm{O}_{5}$ and the mixture was then heated.

Table 2 Heats of formation $\left(\Delta \mathrm{H}_{f}\right)$ of intermediates 6, 7 and 9 and the energy increase [$\Delta \mathrm{E}_{\mathrm{A}}=\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{7})-\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{6}), \Delta \mathrm{E}_{\mathrm{B}}=\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{9})-\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{6})$] with PM 3 ($\mathrm{kcal} \mathrm{mol}^{-\mathbf{1}}$)

	$\Delta \mathrm{H}_{\mathbf{f}}$										
	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{9}$	$\Delta \mathrm{E}_{\mathbf{A}}$	$\Delta \mathrm{E}_{\mathbf{B}}$						
\mathbf{a}	162.2	173.7	178.4	11.5	16.2						
\mathbf{b}	200.3	212.8	217.3	12.5	17.0						
c	188.4	210.7	204.3	22.3	15.9						
\mathbf{d}	193.0	215.0	211.3	22.0	18.3						
\mathbf{e}	166.4	178.0	175.6	11.6	9.2						
\mathbf{f}	125.1	140.7	130.0	15.6	4.9						

$\mathbf{1} \longrightarrow \mathbf{8} \longrightarrow \mathbf{1 1} \longrightarrow \mathbf{2)}{ }^{6}{ }^{6}$ owever, in the presence of phosphorus pentoxide, the formation of a nitrilium intermediate 6 may become the main route. ${ }^{7}$ Electrophilic attack by the nitrilium cation at $\mathrm{C}-2$ of the phenyl group gives the intermediate 9 which is subsequently aromatized to 2 (path B, $\mathbf{1} \longrightarrow \mathbf{6} \longrightarrow \mathbf{9} \longrightarrow \mathbf{2}$), and attack at the $\mathrm{C}-1$ carbon gives the spiro compound $\mathbf{7}$ which is isomerized to $\mathbf{3}$ via $\mathbf{1 0}$ (path A, $\mathbf{1} \longrightarrow \mathbf{6} \longrightarrow \mathbf{7} \mathbf{1 0} \longrightarrow \mathbf{3}$). When R^{2} is a methoxy group and R^{1} is hydrogen, path A becomes the main route because of the electron-donating effect of the methoxy group. The presence of a spiro intermediate has been reported in the Pictet-Spengler isoquinoline synthesis. ${ }^{8}$
We calculated the heats of formation ($\Delta \mathrm{H}_{\mathrm{f}}$) of intermediates 6,7 and 9 with $P M 3,{ }^{9}$ and the energy increase ($\Delta \mathrm{E}_{\mathrm{A}}$ and $\Delta \mathrm{E}_{\mathrm{B}}$) from $\Delta \mathrm{H}_{\mathrm{f}}(6)$ to $\Delta \mathrm{H}_{\mathrm{f}}(7)$ or $\Delta \mathrm{H}_{\mathrm{f}}(9)$ (Table 2). The formation energies $\Delta \mathrm{H}_{\mathrm{f}}(7 \mathrm{a}, \mathbf{b})$ are $4.5-4.7 \mathrm{kcal} \mathrm{mol}^{-1}$ lower than $\Delta \mathrm{H}_{\mathrm{f}}(9 \mathrm{a}, \mathrm{b})$, whereas $\Delta \mathrm{H}_{\mathrm{f}}(7 \mathrm{c}, \mathrm{d})$ are $3.7-6.4 \mathrm{kcal}$ higher than $\Delta \mathrm{H}_{\mathrm{f}}(9 \mathrm{c}, \mathrm{d})$. This suggests that the conversion from $\mathbf{6 a , b}$ into $\mathbf{7 a , b}$ (path A) is easier than that into $9 \mathbf{a}, \mathbf{b}$ (path B) in the reaction of $\mathbf{l a}, \mathbf{b}$, while path B is easier than path A in the reaction of $\mathbf{l c}, d$. Since the differences between $\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{7})$ and $\Delta \mathrm{H}_{\mathrm{f}}(9)$ are small, both paths may occur in competition with each other. In the reaction of $\mathbf{1 c}, \mathbf{d}$, however, conversion from $\mathbf{6 c}, \mathbf{d}$ into $\mathbf{7 c}, \mathbf{d}$ (path A) would be difficult because of the greater energy increase $\left[\Delta \mathrm{E}_{\mathrm{A}}(\mathbf{c}, \mathrm{d})=\mathrm{ca}\right.$. $\left.22 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right]$ than in $\mathbf{1 a}, \mathbf{b}\left[\Delta \mathrm{E}_{\mathrm{A}}(\mathbf{a}, \mathbf{b})=\mathrm{ca} .12 \mathrm{kcal} \mathrm{mol}^{-1}\right]$. Thus, path A and path B compete with each other in the reaction of $\mathbf{l a}, \mathbf{b}$, but not in that of $\mathbf{1 c} \mathbf{c}$ d. The cyclization of $\mathbf{6 e}, \mathbf{f}$ could proceed preferentially via path B because of the small energy increase $\left[\Delta \mathrm{E}_{\mathbf{B}}(\mathrm{e}, \mathrm{f})=4.9-9.2 \mathrm{kcal} \mathrm{mol}^{-1}\right]$. Indeed, high yields of $2 \mathrm{e}, \mathrm{f}$ are obtained under mild reaction conditions (entries 11, 12).

To examine whether comparison of $\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{7})$ and $\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{9})$ or of $\Delta \mathrm{E}_{\mathrm{A}}$ and $\Delta \mathrm{E}_{\mathrm{B}}$ can really be used to predict the formation of abnormal products, we searched for compounds which should give abnormal Bischler- N apieralski reaction products. In the calculation for N -[2-(6-methoxy-2-naphthyl)ethyl]-4-methoxybenzamide 12, the formation energies and the increase in energy

14
15

17
$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p$

Scheme 3 Reagents and conditions: i, $\mathrm{POCl}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}, 110^{\circ} \mathrm{C}, 3 \mathrm{~h}$
to the expected intermediates $\mathbf{1 3}, 14$ and 15 are $\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{1 3})=$ 177.8, $\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{1 4})=195.4$ and $\Delta \mathrm{H}_{\mathrm{f}}(\mathbf{1 5})=189.7 \mathrm{kcal} \mathrm{mol}^{-1}$; $\Delta \mathrm{E}_{\mathrm{A}}=11.9$ (path A) and $\Delta \mathrm{E}_{\mathrm{B}}=17.6 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ (path B) (Scheme 3). These values predict the formation of abnormal product 17. The reaction of $\mathbf{1 2}$ with phosphoryl chloride and phosphorus pentoxide gave a mixture of 8 -methoxy-1-(4-methoxyphenyl)-3,4-dihydrobenzo[h]isoquinoline 16 and 8 -methoxy-4-(4-methoxyphenyl)-1,2-dihydrobenzo[f]isoquinoline 17 in a ratio of 49:51.

Experimental

X ylene was dried by distillation from Na . A ll melting points are uncorrected; J values are given in $\mathrm{Hz} . \mathrm{RT}=$ room temperature.

N-[2-(4-M ethoxyphenyl)ethyl]4-methoxybenzamide 1a

A solution of 4-methoxybenzoyl chloride ($5.97 \mathrm{~g}, 35.0 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3}\right)$ was added dropwise to a mixture of 2-(4methoxyphenyl)ethylamine ($4.56 \mathrm{~g}, 30.2 \mathrm{mmol}$), CHCl_{3} (30 cm^{3}) and 20% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}\left(30 \mathrm{~cm}^{3}\right)$ at $2-4^{\circ} \mathrm{C}$. The mixture was stirred at RT for 3 h and then extracted with CHCl_{3}. The organic layer was washed with 1 m aqueous HCl and saturated
aqueous NaHCO_{3}, dried ($\mathrm{M} \mathrm{gSO}_{4}$) and concentrated under reduced pressure. The residue was recrystallized from EtOH to give the title amide la ($7.36 \mathrm{~g}, 86 \%$), mp $164-165^{\circ} \mathrm{C}$ (Found: C, 71.6; $\mathrm{H}, 6.7 ; \mathrm{N}, 4.9 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.6 ; \mathrm{H}, 6.7 ; \mathrm{N}$, $4.9 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3317$ and 1637; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{M}_{4} \mathrm{Si}\right) 2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6), 3.66(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.6), 3.80(3 \mathrm{H}, \mathrm{s}), 3.83$ ($3 \mathrm{H}, \mathrm{s}$), $6.04(1 \mathrm{H}, \mathrm{br}$ s), $6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8), 6.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0)$, $7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8)$ and $7.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0)$.

N -[2-(4-M ethylphenyl)ethyl]-4-methoxybenzamide 1c

In a manner similar to that described above, a solution of 4methoxybenzoyl chloride ($3.43 \mathrm{~g}, 20.1 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added to a mixture of 2-(4-methylphenyl)ethylamine (1.90 $\mathrm{g}, 14.0 \mathrm{mmol}), \mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3}\right)$ and 20% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(15$ cm^{3}) and worked up to give the title amide $1 \mathrm{c}(2.43 \mathrm{~g}, 64 \%)$, mp $114-115^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 75.6; H, 7.0; N, 5.3. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 75.8 ; \mathrm{H}, 7.1 ; \mathrm{N}, 5.2 \%$); $v_{\text {max }}(\mathrm{N} \mathrm{ujol}) / \mathrm{cm}^{-1}$ 3348 and 1639; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.33$ ($3 \mathrm{H}, \mathrm{s}$), 2.88 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0$), $3.67(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0), 3.83(3 \mathrm{H}, \mathrm{s}), 6.10(1 \mathrm{H}, \mathrm{br}$ s), $6.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8), 7.12(4 \mathrm{H}, \mathrm{s})$ and $7.66(2 \mathrm{H}, \mathrm{J} 8.8)$.

N -[2-(4-C hlorophenyl)ethyl]4-methoxybenzamide 1d

U sing the method described above, a solution of 4 methoxybenzoyl chloride ($3.50 \mathrm{~g}, 20.5 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added to a mixture of 2-(4-chlorophenyl)ethylamine (2.03 $\mathrm{g}, 13.1 \mathrm{mmol}), \mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3}\right)$ and 20% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(20$ cm^{3}) and worked up to give the title amide $1 \mathrm{~d}(3.04 \mathrm{~g}, 80 \%)$, mp $168-170^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 66.3; H, 5.6; N, 4.9. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CINO} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 66.3 ; \mathrm{H}, 5.6 ; \mathrm{N}, 4.8 \%\right) ; v_{\max }(\mathrm{Nujol}) /$ $\mathrm{cm}^{-1} 3350$ and 1637; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.89(2 \mathrm{H}, \mathrm{t}$, J 7.0), $3.66(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0), 3.83(3 \mathrm{H}, \mathrm{s}), 6.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.90$ (2 H, d, J 9.2), 7.15 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$), 7.28 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$) and 7.66 (2 H, d, J 9.2).

Reaction of la with phosphoryl chloride (Table 1, entry 1)
To a solution of $1 \mathbf{a}(10.61 \mathrm{~g}, 37.2 \mathrm{mmol})$ in xylene ($100 \mathrm{~cm}^{3}$) was added $\mathrm{POCl}_{3}(160 \mathrm{~g}, 1.0 \mathrm{~mol})$, and the mixture was heated at $110^{\circ} \mathrm{C}$ for 3 h and then poured into ice-water. The mixture was washed with ethyl acetate, made alkaline with 20% aqueous NaOH and extracted with ethyl acetate The organic layer was washed with water, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated to give 7-methoxy-1-(4-methoxyphenyl)-3,4-dihydroisoquinoline 2a ($2.75 \mathrm{~g}, 28 \%$), an oil; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.71(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.3), 3.73 (3H, s), 3.79 (2 H , t, J 7.3), 3.86 ($3 \mathrm{H}, \mathrm{s}$), 6.86 ($1 \mathrm{H}, \mathrm{d}$, J 2.4), 6.93 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5$ and 2.4), $6.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5), 7.18$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$) and $7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5)$.

To a solution of 2a ($2.75 \mathrm{~g}, 10.3 \mathrm{mmol}$) in $\mathrm{MeOH}\left(14 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(0.43 \mathrm{~g}, 11.4 \mathrm{mmol})$, and the mixture was stirred at RT for 1 h ; it was then poured into water ($60 \mathrm{~cm}^{3}$) and extracted with ethyl acetate. The extract was washed with saturated brine, dried $\left(\mathrm{M} \mathrm{SOO}_{4}\right)$ and concentrated under reduced pressure to give 7-methoxy-1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline 4a ($1.58 \mathrm{~g}, 57 \%$); mp $82-83^{\circ} \mathrm{C}$ (from ethyl acetate) (Found: C, 76.0; $\mathrm{H}, 7.2 ; \mathrm{N}, 5.2 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{2}$ requires C, 75.8; H, 7.1; N, 5.2\%); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3256,1608$, 1506 and $1252 ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.29(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 2.69-3.26(4H, m), $3.64(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 5.03(1 \mathrm{H}, \mathrm{s}), 6.29$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$), 6.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and 8.5), 6.85 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$), $7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5)$ and $7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5)$.

Reaction of 1a with phosphorus pentoxide (Table 1, entry 2)
A mixture of la ($1.00 \mathrm{~g}, 3.5 \mathrm{mmol}$), $\mathrm{P}_{2} \mathrm{O}_{5}(4.19 \mathrm{~g}, 29.5 \mathrm{mmol})$ and xylene ($15 \mathrm{~cm}^{3}$) was heated at $130{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was treated in a manner similar to that described above to give a mixture of 2a and 6-methoxy-1-(4-methoxyphenyl)-3,4dihydroisoquinoline 3a (total $0.165 \mathrm{~g}, 18 \%$, ratio 37 : 63). The structure of 3a was determined by spectroscopic comparison with an authentic sample that had been prepared independently. The product ratio was determined from the proton ratios in an ${ }^{1} H N M R$ spectrum of the mixture.

Reactions of la with phosphorus chloride and phosphorus
pentoxide (Table 1, entry 3)
To a mixture of $1 \mathrm{a}(1.00 \mathrm{~g}, 3.5 \mathrm{mmol}), \mathrm{P}_{2} \mathrm{O}_{5}(5.38 \mathrm{~g}, 37.9 \mathrm{mmol})$ and xylene ($25 \mathrm{~cm}^{3}$) was slowly added $\mathrm{POCl}_{3}(10.43 \mathrm{~g}, 68.0$ $\mathrm{mmol})$. The mixture was allowed to react in a manner similar to that described above (entry 2) to give a mixture of 2 a and 3 a (total $0.60 \mathrm{~g}, 64 \%$, ratio $16: 84$).
(Entry 4) To a mixture of $1 \mathrm{a}(1.00 \mathrm{~g}, 3.5 \mathrm{mmol})$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ $(3.31 \mathrm{~g}, 23.4 \mathrm{mmol})$ was slowly added $\mathrm{POCl}_{3}(32.9 \mathrm{~g}, 215$ mmol). The mixture was heated at $110^{\circ} \mathrm{C}$ for 3 h and then worked up to give a mixture of 2a and 3a (total $0.72 \mathrm{~g}, 77 \%$, ratio <5: >95).
(Entry 5) A mixture of $\mathbf{l a}(6.20 \mathrm{~g}, 21.7 \mathrm{mmol})$ and POCl_{3} ($87.2 \mathrm{~g}, 569 \mathrm{mmol}$) was slowly added to $\mathrm{P}_{2} \mathrm{O}_{5}(18.0 \mathrm{~g}, 63 \mathrm{mmol})$. The mixture was allowed to react to give a mixture of 2a and 3a (total $2.90 \mathrm{~g}, 50 \%$, ratio $67: 33$).

Reaction of N -[2-(4-methoxyphenyl)ethyl]benzamide ${ }^{5} \mathrm{lb}$ with

 phosphoryl chloride and phosphorus pentoxide (Table 1, entry 6) A mixture of compound $\mathbf{1 b}(1.00 \mathrm{~g}, 3.9 \mathrm{mmol}), \mathrm{POCl}_{3}(32.9 \mathrm{~g}$, $215 \mathrm{mmol})$ and $\mathrm{P}_{2} \mathrm{O}_{5}(3.06 \mathrm{~g}, 21.5 \mathrm{mmol})$ was treated in a manner similar to that described above (entry 4) to give a mixture of 6-methoxy-1-phenyl-3,4-dihydroisoquinoline ${ }^{5} 2 \mathrm{~b}$ and 5-methoxy-1-phenyl-3,4-dihydroisoquinoline ${ }^{5}$ 3b (total 0.525 g , 56%, ratio 67:33); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) \mathbf{2 b}$: $2.74(2 \mathrm{H}$, t, J 7.3), 3.72 (3 H, s), 6.82 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.6$), 6.94 ($1 \mathrm{H}, \mathrm{dd}$, J 2.6 and 8.4$)$ and $7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4) ; 3 \mathrm{~b}: 2.79(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3), 3.85$ ($3 \mathrm{H}, \mathrm{s}$), $6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.6$ and 8.4$), 6.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.6)$ and 7.21 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4$); others 3.79-3.85 ($2 \mathrm{H}, \mathrm{m}$) and 7.40-7.62 ($5 \mathrm{H}, \mathrm{m}$).To the mixture of $\mathbf{2 b}$ and $\mathbf{3 b}(483 \mathrm{mg}, 2.0 \mathrm{mmol})$ in EtOH $\left(20 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(175 \mathrm{mg}, 4.6 \mathrm{mmol})$. The mixture was stirred at RT for 1 h and then worked up in a manner similar to that described for the preparation of 4 a to give a mixture of 7 -methoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline ${ }^{5}$ 4b and 6 -methoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline ${ }^{5}$ 5b (total $473 \mathrm{mg}, 97 \%$, ratio 67:33); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) 4b: $3.63(3 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{s}), 6.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.6), 6.73 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.6$ and 8.4) and 7.06 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4$); 5b: 3.77 ($3 \mathrm{H}, \mathrm{s}$), 5.04 ($1 \mathrm{H}, \mathrm{s}$), 6.61 (1 H , dd, J 2.6 and 8.4), 6.66 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4$) and $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.6)$; others $2.02(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 2.73-3.26 ($4 \mathrm{H}, \mathrm{m}$) and $7.24-7.34(5 \mathrm{H}, \mathrm{m})$. Isolation of $\mathbf{2 b}$ and $\mathbf{3 b}$, and $\mathbf{4 b}$ and $\mathbf{5 b}$ was difficult because of insufficient separation on silica gel columns. The product ratios were determined from the proton ratios in the ${ }^{1} \mathrm{H} N \mathrm{~N}$ R spectra of the mixtures.

Reaction of 1 c with phosphoryl chloride and phosphorus pentoxide (entry 9)

A mixture of compound $\mathbf{1 c}(1.00 \mathrm{~g}, 3.7 \mathrm{mmol}), \mathrm{POCl}_{3}(32.9 \mathrm{~g}$, $215 \mathrm{mmol})$ and $\mathrm{P}_{2} \mathrm{O}_{5}(2.92 \mathrm{~g}, 23.4 \mathrm{mmol})$ was treated in a manner similar to that described for 1a (entry 4) to give 7-methyl-1-(4-methoxyphenyl)-3,4-dihydroisoquinoline 2c ($0.57 \mathrm{~g}, 61 \%$), an oil; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.30(3 \mathrm{H}, \mathrm{s}), 2.74(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.3), 3.79 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$), 3.86 ($3 \mathrm{H}, \mathrm{s}$), 6.95 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8$), 7.11 (1 $\mathrm{H}, \mathrm{s}), 7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7), 7.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.1$ and 7.7) and 7.56 (2 H, d, J 8.8).

To a solution of $\mathbf{2 c}(552 \mathrm{mg}, 2.2 \mathrm{mmol})$ in EtOH ($20 \mathrm{~cm}^{3}$) was added NaBH_{4} ($195 \mathrm{mg}, 5.2 \mathrm{mmol}$), and the mixture allowed to react to give 7-methyl-1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline $4 \mathrm{c}(515 \mathrm{mg}, 93 \%)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M}_{4} \mathrm{Si}\right.$) $2.18(3 \mathrm{H}, \mathrm{s}), 2.30(1 \mathrm{H}, \mathrm{s}), 2.78-3.23(4 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 5.03$ ($1 \mathrm{H}, \mathrm{s}$), $6.57(1 \mathrm{H}, \mathrm{s}), 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8), 6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8)$, 7.02 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8$) and $7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8)$; hydrochloride $4 \mathrm{c} \cdot \mathrm{HCl} ; \mathrm{mp} 195-197^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 70.4; H, 7.0; $\mathrm{N}, 4.5 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClNO}$ requires $\mathrm{C}, 70.5 ; \mathrm{H}, 7.0 ; \mathrm{N}, 4.8 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2758$ and 1252; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right)$ $1.60(2 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}), 3.01-3.27(4 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 5.34$ $(1 \mathrm{H}, \mathrm{s}), 6.60(1 \mathrm{H}, \mathrm{s}), 6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5), 7.06(2 \mathrm{H}, \mathrm{s})$ and 7.31 (2 H, d, J 8.5).

Reaction of 1d with phosphoryl chloride and phosphorus

 pentoxide (entry 10)To a mixture of $1 \mathrm{~d}(1.00 \mathrm{~g}, 3.5 \mathrm{mmol})$ and $\mathrm{P}_{2} \mathrm{O}_{5}(2.97 \mathrm{~g}, 20.9$ $\mathrm{mmol})$ was added $\mathrm{POCl}_{3}(32.9 \mathrm{~g}, 215 \mathrm{mmol})$, and the mixture was heated at reflux for 48 h . Treatment of the reaction mixture in a manner similar to that described above gave 7-chloro-1-(4-methoxyphenyl)-3,4-dihydroisoquinoline 2d ($0.18 \mathrm{~g}, 19 \%$); $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.75(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3)$, $3.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.3), 3.87 ($3 \mathrm{H}, \mathrm{s}$), 6.96 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6$), 7.21 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$), 7.29 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 7.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and 7.9$)$ and $7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.6).

To a solution of $\mathbf{2 d}(160 \mathrm{mg}, 0.6 \mathrm{mmol})$ in EtOH ($20 \mathrm{~cm}^{3}$) was added $\mathrm{NaBH}_{4}(51 \mathrm{mg}, 1.4 \mathrm{mmol})$, and the mixture was stirred at RT for 1 h . Treatment of the reaction mixture gave 7-chloro-1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline 4d (142 mg , 88%); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3 ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 1.87$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), 2.78-3.26 (4 $\mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{s}), 6.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2), 6.87(2 \mathrm{H}$, d, J 8.8), $7.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4), 7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.2$ and 8.4) and $7.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8)$; hydrochloride $4 \mathrm{~d} \cdot \mathrm{HCl}: \mathrm{mp} 227-228^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 61.7; H, 5.5; N, 4.5. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 61.95 ; \mathrm{H}, 5.5 ; \mathrm{N}, 4.5 \%) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2758$ and $1254 ; \delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M}_{4} \mathrm{Si}\right) 1.60(2 \mathrm{H}, \mathrm{s}), 3.02-3.33(4 \mathrm{H}$, m), $3.82(3 \mathrm{H}, \mathrm{s}), 5.33(1 \mathrm{H}, \mathrm{s}), 6.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 6.94(2 \mathrm{H}, \mathrm{d}$, J 8.4), 7.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$), $7.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and 8.5) and 7.33 (2 H, d, J 8.4).

6-M ethoxy-1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline

 5aA mixture of N -[2-(3-methoxyphenyl)ethyl]-4-methoxybenzamide ($2.02 \mathrm{~g}, 7.1 \mathrm{mmol}$), $\mathrm{POCl}_{3}(74.0 \mathrm{~g}, 48 \mathrm{mmol})$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ ($5.0 \mathrm{~g}, 18 \mathrm{mmol}$) was heated at reflux for 3 h . The mixture was concentrated under reduced pressure and the residue was poured into ice-water. The mixture was washed with ethyl acetate, made alkaline with 20% aqueous NaOH and extracted with ethyl acetate. The extract was washed with water, dried (MSO_{4}) and concentrated to give 6-methoxy-1-(4-methoxy-phenyl)-3,4-dihydroisoquinoline 3 a ($1.73 \mathrm{~g}, 92 \%$), an oil; $\delta_{\mathbf{H}}(500$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.76(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3), 3.76-3.79(2 \mathrm{H}, \mathrm{m}), 3.84$ ($3 \mathrm{H}, \mathrm{s}$), $3.85(3 \mathrm{H}, \mathrm{s}), 6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.7$ and 8.5), $6.79(1 \mathrm{H}$, d, J 2.8), 6.92-6.95 ($2 \mathrm{H}, \mathrm{m}$) , $7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5)$ and $7.53-7.56$ ($2 \mathrm{H}, \mathrm{m}$).
To a solution of $3 \mathrm{aa}(1.73 \mathrm{~g}, 6.5 \mathrm{mmol})$ in $\mathrm{EtOH}\left(20 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(0.50 \mathrm{~g}, 13 \mathrm{mmol})$, and the mixture was stirred at RT for 1 h . Treatment of the reaction mixture in a manner similar to that for 4a gave the title compound $\mathbf{5 a}$ ($1.70 \mathrm{~g}, 97 \%$), $\mathrm{mp} 44-45^{\circ} \mathrm{C}$ (from hexane) (Found: C, 75.9; H, 7.2; N, 5.3. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\left.\mathrm{C}, 75.8 ; \mathrm{H}, 7.1 ; \mathrm{N}, 5.2 \%\right) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $3300,1610,1510$ and $1210 ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3} ; \mathrm{M}_{4} \mathrm{Si}\right) 2.58$ (1 H, br s), 2.77-2.84 (1 H , m), 2.99-3.09 ($2 \mathrm{H}, \mathrm{m}$), 3.20-3.27(1 H, $\mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{s}), 6.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.6$ and 8.4), $6.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.6), 6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4), 6.85(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.8) and $7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8)$.

N -[2-(6-M ethoxynaphthyl)ethyl]-4-methoxybenzamide 12

A solution of 2-cyanomethyl-6-methoxy-2-naphthalene ${ }^{10}$ (197 $\mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$ was added dropwise to a mixture of $\mathrm{LiAlH}_{4}(46 \mathrm{mg}, 1.2 \mathrm{mmol}), \mathrm{AlCl}_{3}(160 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$. The mixture was heated at reflux for 3 h after which it was treated with water $\left(10 \mathrm{~cm}^{3}\right)$ and $30 \mathrm{~m} \mathrm{~K} \mathrm{OH}\left(20 \mathrm{~cm}^{3}\right)$ to quench the reaction, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated to give 2-[2-(6-methoxynaphthyl)]ethylamine (180 mg).

To a mixture of this amine (180 mg), $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and 20% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of 4-methoxybenzoyl chloride ($170 \mathrm{mg}, 1 \mathrm{mmol}$) in CHCl_{3} $\left(10 \mathrm{~cm}^{3}\right)$, at $2-4^{\circ} \mathrm{C}$. The mixture was stirred at RT for 3 h and extracted with CHCl_{3}. The extract was washed with 1 m aqueous HCl and water, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and concentrated. The residue was recrystallized from EtOH to give the title amide 12
(211 mg, 63\%), mp 183-184 ${ }^{\circ} \mathrm{C}$ (Found: C, 75.0; H, 6.3; N, 4.3. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, 75.2; $\left.\mathrm{H}, 6.3 ; \mathrm{N}, 4.2 \%\right)$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3378, 2961, 1645 and 1505; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 3.05$ (2 H, t, J 6.7), 3.78 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.7$), $3.82(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 6.05$ ($1 \mathrm{H}, \mathrm{br}$ s), 6.87 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9$), $7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4), 7.15(1 \mathrm{H}$, dd, J 2.4 and 8.9), $7.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.5$ and 8.2$), 7.61(1 \mathrm{H}, \mathrm{s})$, $7.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9), 7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9)$ and 7.71 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2$).

Reaction of 12 with phosphoryl chloride and phosphorus pentoxide

In a manner similar to that described for $\mathbf{1 a}$ (entry 4), a mixture of compound 12 ($1.00 \mathrm{~g}, 3.0 \mathrm{mmol}$), $\mathrm{POCl}_{3}(32.9 \mathrm{~g}, 215$ $\mathrm{mmol})$ and $\mathrm{P}_{2} \mathrm{O}_{5}(2.84 \mathrm{~g}, 20.0 \mathrm{mmol})$ was heated at $110^{\circ} \mathrm{C}$ for 3 h and then worked up to give a mixture of 8 -methoxy-1-(4-methoxyphenyl)-3,4-dihydrobenzo[h]isoquinoline 16 and 8 -methoxy-4-(4-methoxyphenyl)-1,2-dihydrobenzo[f]isoquinoline 17 (total $0.76 \mathrm{~g}, 81 \%$, ratio 49:51), an oil; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}$; $\mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) 16: 2.81 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7$), 3.73 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7$), 3.83 $(3 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}, \mathrm{s}), 6.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and 9.2$), 6.85(2 \mathrm{H}, \mathrm{d}$, J 8.6), 7.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$), $7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9), 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.6), 7.39 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2$) and $7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{j} 7.9)$; $17: 3.15(2 \mathrm{H}, \mathrm{t}$, J 7.9), $3.87(3 \mathrm{H}, \mathrm{s}), 3.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.9), 3.95(3 \mathrm{H}, \mathrm{s}), 6.96(2 \mathrm{H}$, d, J 9.2), 7.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.1$), 7.24 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.1$ and 9.2), 7.38 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$), $7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5)$ and 8.05 (1 H, d, J 9.2).
To a mixture of $\mathbf{1 6}$ and $\mathbf{1 7}(564 \mathrm{mg}, 1.8 \mathrm{mmol})$ in EtOH (20 cm^{3}) was added $\mathrm{NaBH}_{4}(172 \mathrm{mg}, 4.6 \mathrm{mmol})$. The mixture was stirred at RT for 1 h after which it was worked up to give a mixture of 8-methoxy-1-(4-methoxyphenyl)-1,2,3,4-tetrahydrobenzo[h]isoquinoline 18 and 8 -methoxy-4-(4-methoxyphenyl)-1,2,3,4-tetrahydrobenzo[f]isoquinoline 19 (total $483 \mathrm{mg}, 85 \%$, ratio 49:51), an oil; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl}{ }_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right)$ 18: 2.84-3.10 $(4 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 5.62(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.78(2$ H,d, J 8.5, $3^{\prime}-\mathrm{H}$), 6.93 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.1$ and 9.2, 9-H), 7.05 (2 H , d, J $\left.8.5,2^{\prime}-H\right), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.1,7-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,5-\mathrm{H}$ or $6-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2,10-\mathrm{H})$ and $7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,5-\mathrm{H}$ or 6-H); 19: 3.14-3.54 ($4 \mathrm{H}, \mathrm{m}$), $3.79(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 5.20(1$ H, s, 4-H), $6.84\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2,3^{\prime}-\mathrm{H}\right), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,5-\mathrm{H})$, 7.10 (1 H, d, J 2.4, 7-H), 7.17 (2 H, d, J 9.2, 2'-H), 7.20 ($1 \mathrm{H}, \mathrm{dd}$, J 2.4 and 9.2, 9-H), $7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,6-\mathrm{H})$ and $7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.2, 10-H); 18: upon irradiation at $5.62 \mathrm{ppm}(1-\mathrm{H}), 16 \% \mathrm{NOE}$ enhancement at $7.42 \mathrm{ppm}(10-\mathrm{H})$ and 14% N OE at 7.05 ppm ($2^{\prime}-\mathrm{H}$) were observed; 19: under irradiation at $5.20 \mathrm{ppm}(4-\mathrm{H})$, 7% NOE at $6.88 \mathrm{ppm}(5-\mathrm{H})$ and 14% N OE at $7.17 \mathrm{ppm}\left(2^{\prime}-\mathrm{H}\right)$ were observed; hydrochlorides $18 \cdot \mathrm{H} \mathrm{Cl}$ and $19 \cdot \mathrm{H} \mathrm{Cl}$; mp 236$237{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 70.8$; $\mathrm{H}, 6.3$; $\mathrm{N}, 3.7 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{CIN} \mathrm{O}_{2}$ requires C , 70.9; H, 6.2; N, 3.9\%); $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 18 \cdot \mathrm{HCl}:$ $1.26(2 \mathrm{H}, \mathrm{s}), 3.01-3.60(4 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 6.26$ ($1 \mathrm{H}, \mathrm{s}$) , $6.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2), 6.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.2$ and 9.2), 7.10 (1 H,d,J 3.2), $7.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5), 7.29(1 \mathrm{H}, \mathrm{d}$, J 9.2) and $7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5) ; 19 \cdot \mathrm{HCl}: 1.60(2 \mathrm{H}, \mathrm{s}), 3.20-3.58$ $(4 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 5.54(1 \mathrm{H}, \mathrm{s}), 6.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.2), 6.90 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$), 7.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$), 7.24 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and 9.2), $7.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5), 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2)$ and $7.84(1 \mathrm{H}$, d, J 9.2); $v_{\max }\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 3490,2741\right.$ and 1252. Isolation of the products failed because of insufficient separation on silica gel columns. The product ratios were determined based on the proton ratios in the ${ }^{1} \mathrm{H}$ NMR spectra of the mixtures.

R eferences

1 W. M. Whaley and T. R . G ovindachari, Org. React., 1951, 6, 74.
2 J. Sugawara, Y akugaku Z asshi, 1935, 55, 224 (Chem. A bstr., 1935, 29, 5116).
3 G. S. A hInwalia, K. S. N arang and J. N. R ây, J. Chem. Soc., 1931, 2057.

4 I. Lantos, D. Bhattacharjee and D. S. Eggleston, J. Org. Chem., 1986, 51, 4147.
5 D. L. M inor, S. D. Wyrick, P. S. Charifson, V. J. Watts, D. E. N ichols and R. B. M ailman, J. M ed. C hem., 1994, 37, 4317.

6 B. P. M undy and M. G. Ellerd, in N ame Reactions and Reagents in O rganic Synthesis, John Wiley \& Sons, N ew York, 1988, p. 32.
7 G. Fodor and S. N agubandi, Tetrahedron, 1980, 36, 1279.
8 P. D. Bailey, Tetrahedron Lett., 1987, 28, 5181.
9 Starting geometries for the calculations were obtained with M OL-M OLIS (Daikin Industries, Ltd., Shinjuku-ku, Tokyo 163 J apan). Calculations were performed at the restricted H artree-Fock (RHF) level with the PM 3 method in the M OPAC 93 program (M OPAC93 revision 2: J. J. P. Stewart, JCPE P081, JCPE

N ewsletter, 1995, 6, 76; PM 3: J. J. P. Stewart, J. Comp. Chem., 1989, 10, 209). G eometries were optimized with the Eigenvector Following routine.
10 A. Eriguchi and T. Takegoshi, Chem. Pharm. Bull., 1982, 30, 428.

Paper 7/01332|
R eceived 25th February 1997 A ccepted 24th A pril 1997

